提高数学解题思维能力的方法

人气:177 ℃/2024-04-01 07:41:28
【导读】 提高数学解题思维能力的方法,下面是小编为你收集整理的,希望对你有帮助!数学解题思维能力,是如何炼成的?如何才能提升思维能力,很多考生便依靠题海战术。以下是小编为大家整理推荐关于数学解题思维能力的养成方法,希望对大家有所帮助。数学解题思维能力的提高方法最主要的原因就是“解...

数学解题思维能力,是如何炼成的?如何才能提升思维能力,很多考生便依靠题海战术。以下是小编为大家整理推荐关于数学解题思维能力的养成方法,希望对大家有所帮助。

数学解题思维能力的提高方法

最主要的原因就是“解题思路随意”造成的,并非所谓“不够用功”等原因。由于思维能力的原因,考生在解答高考题时形成一定的障碍。主要表现在两个方面,一是无法找到解题的切入点,二是虽然找到解题的突破口,但做着做着就走不下去了。如何解决这两大障碍呢?

第一,从求解证入手——寻找解题途径

寻找解题途径的基本方法遇到有一定难度的考题我们会发现出题者设置了种种障碍。从已知出发,岔路众多,顺推下去越做越复杂,难得到答案,如果从问题入手,寻找要想获得所求,必须要做什么,找到“需知”后,将“需知”作为新的问题,直到与“已知“所能获得的“可知”相沟通,将问题解决。事实上,在不等式证明中采用的“分析法”就是这种思维的充分体现,我们将这种思维称为“逆向思维”——必要性思维。

第二,数学式子变形——完成解题过程

完成解题过程的关键解答高考数学试题遇到的第二障碍就是数学式子变形。一道数学综合题,要想完成从已知到结论的过程,必须经过大量的数学式子变形,而这些变形仅靠大量的做题过程是无法真正完全掌握的,很多考生都有这样的经历,在解一道复杂的考题时,做不下去了,而回过头来再看一看答案,才恍然大悟,解法这么简单,后悔莫及,埋怨自己怎么糊涂到没有把式子再这么变一下呢?

其实数学解题的每一步推理和运算,实质都是转换变形.但是,转换变形的目的是更好更快的解题,所以变形的方向必定是化繁为简,化抽象为具体,化未知为已知,也就是创造条件向有利于解题的方向转化.还必须注意的是,一切转换必须是等价的,否则解答将出现错误。

解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。寻找差异是变形依赖的原则,变形中一些规律性的东西需要总结。在后面的几章中我们列举的一些思维定势,就是在数学思想指导下总结出来的。在解答高考题中时刻都在进行数学变形由复杂到简单,这也就是转化,数学式子变形的思维方式:时刻关注所求与已知的差异。

第三、回归课本---夯实基础。

1揭示规律----掌握解题方法高考试题再难也逃不了课本揭示的思维方法及规律。我们说回归课本,不是简单的梳理知识点。课本中定理,公式推证的过程就蕴含着重要的方法,而很多考生没有充分暴露思维过程,没有发觉其内在思维的规律就去解题,而希望通过题海战术去“悟”出某些道理,结果是题海没少泡,却总也不见成效,最终只能留在理解的肤浅,仅会机械的模仿,思维水平低的地方。因此我们要侧重基本概念,基本理论的剖析,达到以不变应万变。

2构建网络----融会贯通在课本函数这章里,有很多重要结论,许多学生由于理解不深入,只靠死记硬背,最后造成记忆不牢,考试时失分。

例如:

若fx+a=fb-x则fx关于对称。如何理解?我们令x1=a+x,x2=b-x,则fx1=fx2,x1+x2=a+b,=常数,即两自变量之和是定值,它们对应的函数值相等,这样就理解了对称的本质。结合解析几何中的中点坐标的横坐标为定值,或用特殊函数,二次函数的图像,记忆这个结论就很简单了,只要x1+x2=a+b,=常数fx1=fx2,它可以写成许多形式如fx=fa+b-x.同样关于点对称,则fx1+fx2=b,x1+x2=a中点坐标横纵座标都为定值,关于a/2,b/2对称。

再如若fx=f2a-x,fx=2b-x,则fx的周期为T=2|a-b||如何理解记忆这个结论,我们类比三角函数fx=sinx从正弦函数图形中我们可知x=/2,x=3/2为两个对称轴,2|3/2-/2|=2,而得周期为,这样我们就很容易记住这一结论,即使在考场上,思维断路,只要把图一画,就可写出这一结论。这就是抽象到具体与数形结合的思想的体现。思想提炼总结在复习过程中起着关键作用。类似的结论fx关于点Aa,0及Bb,0对称则fx周期T=2|b-a|,若fx关于Aa,0及x=b对称,则fx周期T=4|b-a|。

这样我们就在函数这章做到由厚到薄,无需死记什么内容了,同时我们还要学会这些结论的逆用。

例:两对称轴x=a,x=b当b=2ab>a则为偶函数.同样以对称点BB,0,对称轴X=a,b=2a是为奇函数.

3加强理解----提升能力复习要真正的回到重视基础的轨道上来。没有基础谈不到不到能力。这里的基础不是指机械重复的训练,而是指要搞清基本原理,基本方法,体验知识形成过程以及对知识本质意义的理解与感悟。只有深刻理解概念,才能抓住问题本质,构建知识网络。

4思维模式化----解题步骤固定化解答数学试题有一定的规律可循,解题操作要有明确的思路和目标,要做到思维模式化。

所谓模式化也就是解题步骤固定化,一般思维过程分为以下步骤:

A、审题审题的关键是,首先弄清要求证的是什么?已知条件是什么?结论是什么?条件的表达方式是否能转换数形转换,符号与图形的转换,文字表达转为数学表达等,所给图形和式子有什么特点?能否用一个图形几何的、函数的或示意的或数学式子对文字题将问题表达出来?有什么隐含条件?由已知条件能推得哪些可知事项和条件?要求未知结论,必须做什么?需要知道哪些条件需知?

B、明确解题目标.关注已知与所求的差距,进行数学式子变形转化,在需知与可知间架桥缺什么补什么

1能否将题中复杂的式子化简?

2能否对条件进行划分,将大问题化为几个小问题?

3能否进行变量替换换元、恒等变换,将问题的形式变得较为明显一些?

4能否代数式子几何变换数形结合?利用几何方法来解代数问题?或利用代数解析方法来解几何问题?数学语言能否转换?向量表达转为解几表达等

5最终目的:将未知转化为已知。

C、求解要求解答清楚,简洁,正确,推理严密,运算准确,不跳步骤;表达规范,步骤完整分析思维和解题思维,可归纳总结为:目标分析,条件分析,差异分析,结构分析,逆向思维,减元,直观,特殊转化,主元转化,换元转化

Copyright © 2008-2024 蜗牛素材网 All Rights Reserved
一个致力于分享各种行业知识与经验、学习资源交流平台,知识让你的眼界更宽广!